Как известно, преобразование электрической энергии в трансформаторе сопровождается потерями. Эти потери можно выразить через КПД – коэффициент полезного действия.
Где Sпотерь – это мощность потерь, S100% – это полная мощность трансформатора, Sполезная – это эффективная мощность трансформатора.
КПД – это коэффициент полезного действия, т.е. отношение преобразованной активной мощности к потребляемой. Соответственно по этому утверждению запишем формулу определения КПД трансформатора:
На самом деле, когда речь идёт о трансформаторе, формулы преобразования мощности всегда записывают через S, т.е. полную мощность P+Q (где P – активная мощность, Q – реактивная). В инженерных расчётах сумму активной и реактивной энергии всегда представляют в виде комплексного числа, в виде P+jQ, так как в действительности векторы Q и P отличаются друг от друга на определённый угол, а решение таких уравнений через комплексные числа полностью удовлетворяет ход и результаты расчётов.
Для практического определения КПД необходимо измерить мощности в первичной и вторичной обмотках, а в нагрузку подключить активное сопротивление, для обеспечения максимально коэффициента мощности (cosφ=1). Данная методика справедлива при измерении КПД тр-ра методом двух ваттметров, или методом непосредственных измерений. Так как если уменьшить значение коэффициента мощности, то измерение соотношений будет несколько не точным.
На что же тратиться энергия в трансформаторе при преобразовании? Потери в трансформаторе бывают двух видов. Первый – потери в меди трансформатора, т.е. в обмотках. Это потери на активном сопротивлении обмоток трансформатора. Энергия потерь рассеивается в виде тепла в окружающую среду. Второй вид потерь – это потери на перемагничивание сердечника трансформатора. Их ещё называют потерями в стали трансформатора. Т.е. это ничто иное, как потери на гестерезис и на вихревые токи, которые возникают в магнитопроводе. Для уменьшения влияния вихревых токов сердечник трансформатора шихтуют, то есть разделяют на изолированные друг от друга пластины, направленные вдоль протекания магнитного потока.
Благодаря шихтованному сердечнику современные промышленные трансформаторы имеют КПД 90%. КПД бытовых трансформаторов меньше, в зависимости от качества трансформаторной стали и правильности обмотки рознится от 60% и более.
Для определения потерь в стали трансформатора необходимо провести опыт холостого хода. На первичную обмотку подаётся номинальное напряжение, а вторичная остаётся не подключенной к нагрузке. Если измерить потребляемый ток, то можно вычислить мощность потерь. Так как на вторичной обмотке нет нагрузки, а сталь сердечника не насыщена, для переменного тока первичная обмотка будет представлять большое индуктивное сопротивление, влияние активного сопротивления при таком токе ничтожно мало, поэтому мы считаем, что весь потребляемый ток трансформатором в таком режиме будет током потерь в стали сердечника.
А для определения потерь в меди трансформатора необходимо провести опыт короткого замыкания. Для этого вторичная обмотка закорачивается, в разрыв цепи устанавливается амперметр. Напрямую или через трансформатор тока – зависит от величины протекающего тока. К первичной обмотке подключается регулируемый источник переменного тока, например ЛАТР (лабораторный автотрансформатор). Постепенно повышая значение напряжения на первичке, добиваются значения номинального тока во вторичной. Напряжение на первичной обмотке, при котором на вторичной устанавливается номинальный ток, называется напряжением короткого замыкания. Соответственно, через это значение находят действительный ток короткого замыкания трансформатора, определяют точный коэффициент трансформации, а так же вычисляют потери трансформатора в обмотках, так как сталь сердечника не насыщена, то в стали протекает малый магнитный поток, потерями в котором можно пренебречь.